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SUMMARY 
The frequency and severity of extreme weather events are escalating globally, yet high-quality, sub-
daily weather data remain scarce across the Balkans, particularly in Serbia. This limits the ability to 
design and adapt critical infrastructure for improved climate resilience. 

This Deliverable presents the first global systematic review of temporal downscaling methods used to 
derive sub-daily weather data from daily or monthly records. It identifies seven main categories of 
temporal scaling techniques, with stochastic weather generators, numerical weather prediction 
models, and scale invariance methods among the most common. Key sectors covered include flood 
risk management, urban infrastructure, and renewable energy ‒ all of which require sub-daily data. 

The five-step protocol screened 296 relevant studies, revealing that nearly half employ hybrid 
approaches, and that scale invariance methods are particularly effective for single-site, sub-hourly 
rainfall extremes. A case study for Novi Sad, Serbia, demonstrated that sub-daily extreme rainfall 
intensities can be estimated from daily data with less than 15% error.  

The Deliverable recommends applying and validating scale invariance techniques across other sites in 
Serbia, then exploring their utility for heatwave metrics, and conducting side-by-side comparisons of 
methods ‒ including AI-based techniques ‒ for other regions in Europe. There is also scope for 
advancing temporal scaling techniques for ungauged areas. These developments could enhance 
regional climate resilience in infrastructure planning, even when there are limited data. 
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1. INTRODUCTION 

Floods, heatwaves, and droughts are increasing globally in terms of their frequency, severity, and 
duration (European Environment Agency, 2024). Climate variability and change also contributes to the 
occurrence of new, unprecedented weather events with significant impacts on society and the natural 
environment (Kelder et al., 2015). For example, the catastrophic autumn 2024 floods in Valencia, Spain 
(Figure 1) was triggered by intense rainfall with one weather station in Chiva recording 491 mm in just 
8 hours – the equivalent to a whole year of rainfall1. According to World Weather Attribution such an 
event is now about twice as likely and 12% heavier due to global warming since preindustrial times2. 

 
Figure 1. Top-10 deadliest flood events in Europe, 1900–2024, based on data from the Emergency 

Events Database (EM-DAT; Charalampous et al., 2025) 

Flash floods, storm surges and windstorms – may occur over durations of minutes to hours; other 
hazards – such as droughts – may develop over weeks to months, or even years. Unfortunately, 
hydrometeorological information on sub-hourly to daily timescales is much less abundant than data 
spanning days to months. Globally there are an estimated 29,000 active weather stations of which 
about 6000 are automated and gathering data at 1, 3, or 6 hour intervals3. Moreover, the distribution 
of observations is highly uneven with the vast majority of weather data gathered in Australia, 
Northwest Europe, North America, and parts of South Asia (Jaffrés, 2019). Nonetheless, high-
resolution weather information is urgently needed for the safe design of buildings, urban drainage 
systems, and energy infrastructure everywhere. Sub-daily data on extreme air temperatures (highs 

 
1 World Meteorological Organisation 
2 World Weather Attribution 
3 Weather Underground 

https://wmo.int/media/news/devastating-rainfall-hits-spain-yet-another-flood-related-disaster
https://www.worldweatherattribution.org/extreme-downpours-increasing-in-southern-spain-as-fossil-fuel-emissions-heat-the-climate/
https://wmo.int/activities/global-observing-system-gos/global-observing-system-gos#:~:text=Through%20the%20surface%2Dbased%20sub,air%20temperature%20and%20relative%20humidity.
https://wmo.int/activities/global-observing-system-gos/global-observing-system-gos#:~:text=Through%20the%20surface%2Dbased%20sub,air%20temperature%20and%20relative%20humidity.
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and lows) and wind gusts are also required to improve building design and performance, plus protect 
human health. 

Considerable progress been made in compiling sub-daily weather records from historic sources. For 
example, the  Global Sub-Daily Precipitation Indices (GSDR-I) are based on 18,591 gauges with at least 
one effective year of hourly data (Pritchard et al., 2023). Unfortunately, these data are also 
concentrated in a few regions (Figure 2a) and the number of gauges with less than 20% missing data 
has declined dramatically since the mid-2000s (Figure 2b). The Balkans in general and Serbia in 
particular stand out as data sparse areas.  

 
Figure 2. Hourly precipitation gauge data in (a) space and (b) time (Pritchard et al., 2023) 

Fortunately, there are many techniques for bridging the gap between more readily available daily/ 
monthly weather data, and less plentiful sub-daily data. These include (1) data rescue and digitization 
initiatives (e.g. Hawkins et al., 2023); (2) dynamical downscaling, including numerical weather 
prediction, re-analysis products, and Regional Climate Models (RCMs) (e.g. Lo et al., 2008); and (3) 
statistical methods for temporal disaggregation (e.g. Kourtis and Tsihrintzis, 2022). The focus of this 
Deliverable is on evaluating methods (2) and (3) plus other techniques using a systematic literature 
review and demonstration study for a data sparse region. 

2. AIMS AND OBJECTIVES 

The overall aim of Deliverable D4.1 is to carry out a preliminary assessment and comparison of state-
of-the-art methods for forecasts and projections of hourly extremes. This will be achieved by: 

1. Undertaking a global systematic review of methods for spatial and temporal downscaling of 
sub-daily weather series under present and future climate conditions. 

2. Demonstrating a parsimonious temporal downscaling method for estimating local intensity-
frequency-duration (IDF) curves for extreme rainfall statistics for Serbia. 

The next section describes the workflow of the meta-analysis, including initial identification then 
screening of peer-reviewed articles. The bulk of this Deliverable is then devoted to a synopsis and 
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critique of the major themes emerging from these sources. The information is used to summarize the 
strengths and weaknesses of several main groups of methods for disaggregating coarse-resolution 
(monthly or daily) data into finer (hourly or sub-hourly) time scales. In each case, selected studies are 
used to show good practice. A pilot study of extreme sub-hourly rainfall estimation is presented for 
Serbia to demonstrate what can be achieved despite very limited data. The final section sums up the 
key findings and offers recommendations for next steps. 

3. META-ANALYSIS 
3.1. Methodology 

A five-step, workflow was used to sift literature to draw out key themes and evidence (Figure 3). This 
follows best-practice guidance on systematic review protocols, including full transparency about the 
meta-analysis protocol (Page et al., 2021). The five steps were: 

1. Define the research question. 
2. Specify inclusion criteria for literature. 
3. Develop the review protocol and search terms. 
4. Remove duplicates and check eligibility. 
5. Codify screened articles by year, author country, source, key words, and time-scaling method. 

The research question specified in Step 1 was: What are the preferred techniques used for temporal 
downscaling from daily or monthly meteorological information to local sub-daily extreme weather 
variables and statistics? 

Step 2 involved searching peer-reviewed literature on the topic of sub-daily downscaling and 
disaggregation of weather variables (such as rainfall, temperature, wind speed, sunshine hours, 
humidity) and related quantities (such as wave heights, and air quality). In each case the article title, 
abstract, or keywords had to refer to downscaling at sub-daily or so sub-hourly time-scales under 
present climate conditions. Articles that also referred to sub-daily weather extremes under climate 
change were included but this was not a prerequisite. 

Step 3 of the workflow defines the data base, search fields, and search period. The Web of Science 
archive was searched for research articles (including data sets and early view papers) and conference 
proceedings, but the latter had to be full papers not just abstracts (to enable scrutiny of technical 
details). All fields were searched within the period January 1997 to March 2025. The initial search 
string was: (empirical OR statistical OR temporal) downscal* climate (hour* OR sub-daily OR IDF4). 
However, it was immediately apparent that this yielded irrelevant sources, for example, on image 
processing or extra-terrestrial bodies. Hence, “NOT” terms were added to sift out such material. After 
this preliminary screening, there were 356 articles remaining for individual inspection. 

Step 4 further reduced the list of candidate articles based on topic relevance or lack of technical detail 
(48 exclusions), article type (10 abstracts only or review papers), or language (2 exclusions). For 
example, case studies of individual extreme weather events, or trends in sub-daily precipitation 
indices would not qualify on the grounds that the data were not time-scaled. In several cases, the 

 
4  Intensity-Duration-Frequency (IDF) curves are widely applied in hydrologic and hydraulic engineering to 
describe the relationship between rainfall intensity, duration, and frequency (or return period). There are 
essential tools for designing infrastructure to be resilient to extreme rainfall events. 
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word “hour” is used in passing rather than in direct reference to a modelling technique. Following this 
stage, 296 articles remained. 

Finally, Step 5 codifies the included articles according to the primary source of data and/or methods 
used to disaggregate daily (or monthly) weather information. A quasi-objective and iterative approach 
was taken to identify recurrent terms then classify articles by temporal downscaling method. This 
search for groups of alike methods was initially assisted by ChatGPT using article abstracts (Annex 1). 

 
Figure 3 Meta-analysis workflow. 

In some cases, multiple terms may be used for the same method. For instance, “change factor”, “delta 
change” and “morphing” are all used to describe the adjustment of present-day climate variables by 
projected amounts of climate change. Moreover, many articles implement multi-stage or hybrid 
downscaling methodologies – such as, quantile-quantile mapping of climate model rainfall to a 
historical rainfall series, to fit an extreme value distribution, and then project changes in the local IDF 
curve (e.g. Willems, 2013). In such cases, all relevant methods were tagged. This allows differentiation 
between single- and mixed-method approaches. 

The next section describes the main themes and techniques that emerged from the included articles. 
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3.2. Major themes 
3.2.1. Overview 

Following topic identification and screening of articles, 296 articles were identified for analysis. There 
are few papers on the topic prior to 2010 – about 90% of included output has occurred since then. 
The number of articles trebled over the decade before the pandemic (2020/21) during which the 
volume peaked (Figure 4, left). Since then, the annual number of articles has returned to pre-2020 
levels of about 25 outputs per year.  

Analysis of coauthor affiliations reveals that the USA and China account for 23% and 8% of the output, 
respectively (Figure 4, right). Moreover, more than two thirds of the articles were attributed to 
coauthors affiliated to just 10 countries (USA, China, Canada, Germany, UK, South Korea, Spain, Italy, 
Switzerland, and Australia). The Czech Republic and Serbia are the only two countries in Eastern 
Europe with contributing authors (respectively Hirschi et al., 2012; Shrestha et al., 2017), but neither 
study referred to the Balkans. 

  
Figure 4 Output volume by year (left panel) and as a proportion by author country (right panel). 

The top six most frequently occurring terms in paper titles were “model” (n = 95), “precipitation” (n = 
72), “temperature” (n = 55), “rainfall” (n = 53), “variability” (n = 38), and “climate change" (n = 31) 
(Figure 5). Some of the most common multi-word phrases in the titles were “climate change” (n = 89), 
“downscaling of” (n = 34), “intensity duration frequency” (n = 38), “statistical downscaling” (n = 24), 
“high resolution” (n = 19), and “sub daily” (n = 14). This is consistent with a strong emphasis on climate 
change, downscaling methods, IDF curves, high-resolution modelling, and future climate projections. 

 
Figure 5 Word cloud drawn from the most common words in article titles 

The top six most favoured sources were the Journal of Hydrology (n = 19), International Journal of 
Climatology (n = 16), Hydrology and Earth System Sciences (n = 10), Journal of Geophysical Research-
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Atmospheres (n = 10), and Theoretical and Applied Climatology (n = 10). Overall, the topic appeared 
in 127 different journals, with the top 20 periodicals accounting for more than 50% of the total output. 
Amongst these 20 journals, 8 are hydrological, 5 are climate and/or meteorological, 3 are geophysical, 
3 are cross-disciplinary, and 1 is energy/ building focused. Hence, there is a strong preference for the 
topic to be published in hydro-climate orientated journals. 

The five main sectors identified from article abstracts are water and flood risk management; urban 
infrastructure and drainage; renewable energy and power systems; agriculture and land management; 
and human health (Annex A2). These require sub-daily weather information for many practical 
applications including: flash flood prediction and estimation of Intensity-Duration-Frequency (IDF) 
curves; stormwater drainage system design and infrastructure planning; energy yield and demand 
forecasting; soil moisture and irrigation needs; and for evaluating urban heat stress and bioclimatic 
indices for vulnerable populations. There are also cross-cutting uses of spatially and temporally 
disaggregated hydromet information by climate and weather service providers. 

Downscaling and weather generator techniques have been reviewed extensively before (Wilby and 
Wigley, 1997; Wilks and Wilby, 1999; Fowler et al., 2007; 2025; Benestad et al., 2008; Hertig et al., 
2018; Maraun and Widmann, 2018). There have also been comprehensive reviews of tools that make 
use of sub-daily weather information and are integral to engineering practices – such as IDF curves 
(e.g. Kourtis and Tsihrintzis, 2022). However, the emphasis of this Deliverable is on the specific 
techniques for temporal scaling that emerge from the included literature. The main groups of methods 
are (i) dynamical downscaling; (ii) statistical downscaling; (iii) stochastic; (iv) machine learning; and (v) 
multi-temporal models. Additionally, there are (vi) other techniques that do not fall into the previous 
categories or (vii) cross-cutting methods. Each set of techniques is discussed and illustrated below. 

3.2.2. Dynamical downscaling 

Three sub-types of dynamical downscaling are evident in the screened literature. These are based on 
outputs from high-resolution reanalyses, numerical weather prediction (NWP)/ forecasting models, 
and Regional Climate Models (RCMs). 

Climate reanalyses are produced by blending climate models with observations to create gridded 
weather variables for the whole of the Earth’s surface and for multiple levels in the atmosphere. These 
archives of quasi-observations can cover many decades and are typically updated in near real-time. 
For instance, the ECMWF Reanalysis v5 (ERA5) provides hourly estimates of numerous atmospheric, 
land and ocean variables since January 1940, on a 31 km grid5. Daily and monthly aggregates of these 
hourly fields are also available. Some now claim that such products have rendered obsolete traditional 
gridded observation data (Kusch and Davy, 2022) which gives some authors confidence in applying re-
analyses products directly to land surface modelling (Muñoz-Sabater et al., 2021). However, further 
post-processing of reanalysis fields is normally required – such as via high-resolution forecasting (e.g. 
Sridhar et al., 2019), regional climate (e.g. Reder et al., 2022), or statistical downscaling models (e.g. 
Mahmud et al., 2008). High-resolution re-analyses may also be used to estimate temporal downscaling 
parameters, enabling production of IDF curves for any location globally (e.g. Courty et al., 2019; Wang 
et al., 2025). 

 
5 https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5  

https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5
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Numerical Weather Prediction and forecasting models are also widely used to produce information 
about extremes at sub-daily scales at resolutions down to just a few hundreds of metres. One potential 
advantage is that NWP ensembles of 10 to 50 runs are typically archived and can be post-processed 
to enable more thorough evaluation of forecast and downscaling uncertainties (Lee and Barker, 2023). 
Models such as WRF and the convection-permitting SPHERA have been used to investigate weather 
extremes including heavy rainfall (Giordani et al., 2023), maximum daily temperatures (Wang et al., 
2016), and hourly surface ozone concentrations (Yahya et al., 2016). Some experiments have applied 
further scaling to NWP model output to then downscale rainfall intensities to 10 min resolution at 
individual weather stations (e.g. Vu et al., 2018). Alternatively, bias correction techniques (see 
Statistical Downscaling below) may be applied to improve the match between NWP output and 
extreme weather variables at the local scale (e.g. Yuan-Fong et al., 2016). Recent advances in machine 
learning techniques are also enabling the rapid emulation of more computationally demanding NWP 
models for nowcasting weather in emergency situations (e.g. Ayoub et al., 2024). 

Regional Climate Models (RCMs), like NWP models, take coarse resolution information about 
atmospheric boundary conditions (from re-analyses and/or Global Climate Models [GCMs]) to better 
represent land surface feedbacks and atmospheric processes at higher resolutions over a limited area. 
This lateral information about wind speeds, water vapour, temperature, and pressure is generally 
updated every few hours. RCMs typically simulate weather at spatial resolutions of 10-50 km for 
several decades, although convection-permitting models may operate at 2-4 km but only for 10-20 
years due to their high computational cost (Estermann et al., 2025). Results from RCMs are known to 
depend on the source(s) of the boundary conditions, their structure, parameterisation and resolution 
of rainfall processes, initial conditions, spatial and temporal resolution (Fowler et al., 2025). However, 
RCM experiments can be used to investigate the sensitivity of sub-daily weather extremes to land-
surface changes urbanisation (e.g. Langendijk et al., 2021), as well as improve representation of 
topographic effects (Jang et al., 2017) and important phenomena such as atmospheric rivers (Schaller 
et al., 2020). Output from RCMs can also be used to assess the impact of climate change on IDF curves 
(e.g. Hosseinzadehtalaei et al., 2018) as well as in hybrid approaches involving statistical downscaling, 
weather generators, and machine learning methods (e.g. Kajbaf et al., 2023). 

3.2.3. Statistical downscaling 

There are literally thousands of statistical downscaling studies worldwide, but relatively few apply 
both spatial and temporal downscaling to site-level, hourly resolutions. The two main sub-types of 
spatial-temporal downscaling are quantile-quantile mapping (QQM) and other bias correction 
methods. These establish empirical relationships between variable(s) at a coarser space- (and time-) 
scale and variable(s) of interest at the local area/ point (sub-daily) scale. 

Quantile-quantile mapping (also known as Perfect Prognosis) involves matching values in a cumulative 
distribution from a climate (or NWP) model with equivalent quantiles in an observed cumulative 
distribution (Figure 6). This is undertaken to reduce biases and/or improve resolution. For instance, 
percentiles of airflows from a GCM grid might be empirically related to the percentiles of observed 
local wind speeds (e.g. Kulkarni et al., 2018). This assumes, for example, that the 99th percentile daily 
mean airflow is skilful at the grid scale and is representative of the 99th percentile wind gust at the 
site scale. The QQM technique can be used to adjust IDF curves by matching observed daily and sub-
daily rainfall quantiles within a baseline period (e.g. Crévolin et al., 2023). This involves first extracting 
annual maximum series and fitting them to a distribution such as GEV. The established QQM 
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relationship is then assumed to remain valid under future climate conditions. This enables estimation 
of future local, sub-daily extreme rainfall from future grid-scale, daily GCM output. The QQM is highly 
versatile as it can be applied to reanalysis, NWP and RCM output. However, results will vary according 
to the expected underlying distribution and method of interpolation between distributions. The 
outcomes from extrapolating unobserved quantiles and/or propagation of climate change signals 
from GCMs are also method dependent (Pierce et al., 2015). 

 
Figure 6. Quantile mapping showing how the simulated quantile (value) from a model distribution 
can be replaced (downscaled) by the same quantile in an observed distribution (here temperature; 

Maraun, 2016) 

Most bias correction methods focus on adjusting the mean and/or variance of the target variable. 
However, other disaggregation techniques are needed to address frequency-dependent climate 
model issues. For instance, GCMs and RCMs have long been known to manifest the “drizzle” effect 
whereby frequencies of low-magnitude precipitation events are typically over-estimated (Dai, 2006). 
Various methods are available to temporally downscale bias corrected daily climate data to sub-daily 
precipitation values, including resampling hourly observations from meteorologically similar days (e.g. 
Zabel and Poschlod, 2023); applying a method based on scale-invariance (e.g. Requena et al., 2021); 
or disaggregating reanalysis wet-day frequencies using sub-daily remotely sensed rainfall products 
(Sheffield et al., 2006). Other techniques involve first bias correcting via methods akin to Model Output 
Statistics (MOS) – which use multiple, coarse-resolution predictor variables to estimate site-scale 
precipitation (and other predictands) – then secondly, scaling the parameters of rainfall amount 
distributions across different time-scales (e.g. Wilby et al., 2023). Alternatively, hourly (heat stress) 
metrics may be downscaled directly from bias corrected daily predictors (temperature, humidity, solar 
radiation, wind speed, and air pressure) from GCMs (e.g. Takakura et al., 2019). 

3.2.4. Stochastic methods 

Three sub-types of stochastic time-scaling methods may be used. These are weather generators 
(WGs), Poisson process models, and non-parametric, analogue resampling methods. Unlike dynamical 
downscaling and (the majority of) statistical downscaling techniques, stochastic methods are not 
intended to reproduce observed sub-daily time-series. Instead, they are meant to simulate the 
distribution of sub-daily quantities. 
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Stochastic weather generators ‒ such as CLIGEN and LARS-WG ‒ typically represent day-to-day (or 
multi-day) transitions between two or more weather pattern (or wet/dry day) states using Markov 
chains. In turn, these states condition secondary variables such as daily rainfall amounts, maximum 
and minimum temperatures, and solar radiation (e.g. Halder and Saha, 2024). To obtain sub-daily 
weather information, further statistical modelling or resampling of observed sub-daily quantities is 
required (Park and Chung, 2020). For example, weather types can be used to estimate daily maximum 
wave heights that are then used to predict distributions of hourly wave heights from which values are 
randomly drawn (e.g. Lucio et al., 2020). Alternatively, the hourly behaviour of variables like solar 
radiation, temperature and humidity can be represented via predictable diurnal cycles, specified bythe 
daily mean and maximum-minimum range (e.g. Aurambout et al., 2024; Saad et al., 2025). Other 
weather generators estimate local parameters of sub-daily behaviour (such as the monthly maximum 
30-minute rainfall intensity in CLIGEN) from statistical relationships with more readily available daily 
to monthly aggregations of wet-day amounts, wet-to-wet day transitions, temperature, and other 
indices (Fullhart et al., 2023). Wet- and dry-spell durations may also be generated using an hourly 
(rather than daily) renewal process by sampling from mutually independent probability distributions 
(e.g. Peleg et al., 2019). 

Poisson process algorithms such as the Bartlett-Lewis Rectangular Pulse, HYETOS, Neyman-Scott 
Rectangular Pulses (NSRP), and RainSim envisage sub-daily rainfall associated with clusters of rain cells 
within a storm (Figure 7). Storm origins occur as a Poisson process with simulated arrival rate (Figure 
7a), and exponentially distributed cell number (Figure 7b), time interval, duration, and rainfall 
intensities (Figure 7c). The total rainfall intensity is then equal to the sum of the intensities of all the 
active cells at that time (Figure 7d). This approach has several advantages: (1) extreme rainfall intensity 
and other features of interest (such as pulse duration) can be produced over timescales of minutes to 
days; (2) extreme values can be stochastically generated that are outside the range of the training 
data; and (3) model parameters can be recalibrated using GCM or RCM rainfall series to produce IDF 
curves consistent with future climate conditions (Khazaei, 2021). Moreover, the basic NSRP model can 
be extended to multi-site applications with parameters representing the spatial density and mean 
radius of rain cells, and spatial autocorrelation of precipitation (Sørup et al., 2016). However, hybrid 
Poisson rainfall/weather generator configurations are needed to generate synthetic hourly rainfall 
series alongside other synthetic variables needed for hydrological modelling (e.g. Zhang et al., 2019). 

Non-parametric resampling methods drawn from libraries of days with sub-daily meteorological 
information that can be recalled based on the similarity of their daily state with a randomly generated 
analogue (e.g. Keller et al., 2017). For instance, large-scale reanalysis data sets may be used to define 
daily weather types and associated patterns of multi-site rainfall. Hourly rainfall series from the k 
nearest neighbour candidate days are then be chosen with or without further adjustments to the 
sequence of amounts (as in Lin et al., 2017). Such weather pattern techniques do not require any 
assumptions about the distribution(s) of underlying data. They are also highly versatile as evidenced 
by applications to extreme hourly precipitation (Rau et al., 2020), heat and air pollution (Cheng et al., 
2008), solar radiation (Jiménez-Valero et al., 2022), wind (O’Neill et al., 2017) and wave conditions 
(Camus et al., 2017). However, the following major assumptions are made when resampling from 
weather patterns under future climate conditions: (1) there is a strong relationship between the 
patterns and the target variable(s); (2) the weather patterns and their changed frequencies are well-
represented by the GCM or RCM; and (3) the relationship between the weather patterns and target 
variables are stationary over decadal time-scales (Haberlandt et al., 2015). 
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Figure 7.  A schematic of the NSRP model (Kilbsy et al., 2007) 

3.2.5. Machine learning 

Two sub-types of machine learning were identified. These are Artificial Neural Networks (ANNs) and 
adaptive optimization techniques (such as Random Forests [RFs], Gradient Boosting [GB], and Genetic 
Algorithms [GA]). 

Artificial Neural Networks have been used in downscaling for a long time (Hewitson and Crane, 1996) 
but there are relatively few examples of their application to temporal downscaling or disaggregation. 
ANNs are essentially black box models that relate inputs and outputs via mathematical networks of 
nodes, weights and linkages. This means that sub-daily data are always needed to train ANNs. Such 
information may be obtained from various sources, including observations/ re-analysis products (e.g. 
Kumar et al., 2012), weather forecasting models (Afshari et al., 2023), or GCM-RCM combinations (e.g. 
Mirhosseini et al., 2014). For instance, one early study used time series of pre-, concurrent, and post 
hourly rainfall as input, and four 15 min rainfall totals for the middle hour as output (Zhang et al., 
2008). In another case, an ANN was trained on the relationship between hourly ground-level nitrogen 
dioxide (NO2) observations and daily tropospheric NO2 column density from the TROPOMI satellite 
and other atmospheric variables to downscale the daily NO2 to hourly surface concentrations (Yu and 
Liu. 2021). Other diverse applications include downscaling daily GCM output to hourly wind, solar and 
temperature variables at 4 km resolution for the energy sector (Buster et al., 2024);  hourly WRF 
output to 1 km resolution near surface urban temperatures (Afshari et al., 2023); 30 km ERA5 
reanalysis to 0.1 km resolution evaporation estimates for a high-altitude saline lake ecosystem (Lobos-
Roco et al., 2022); and 3 h RCM precipitation fields to 2-h, 1-h, 30- and 15-min durations to generate 
present and future IDF curves (Kajbaf et al., 2022). 

Random Forests (RFs) and Genetic Algorithms (GAs) are machine learning techniques that support 
data classification and regression modelling. They have been used as an adaptive approach to 
optimising and calibrating temporal downscaling models. For example, RFs and GAs were able to 
emulate 15-min streamflow in ungauged situations given hydrological model parameter sets and daily 
streamflows (Budamala et al., 2022). Others have used RFs to regress monthly atmospheric predictors 
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and daily rainfall against sub-daily rainfall statistics at hundreds of sites to estimate the parameters 
needed to run a Poisson cluster model (Diez-Sierra and del Jesus, 2019). Similarly, RFs can take 
information about site coordinates (latitude, longitude), elevation, distance from coast and climate 
regime to estimate a local scaling parameter for sub-daily extreme rainfall estimation (Wang et al., 
2025). Regression-based estimates of IDF parameters may also be enhanced by Gradient Boosting 
trees (e.g. Hu and Ayyub, 2019). Likewise, non-parametric resampling algorithms for sub-daily rainfall 
may be optimized using Genetic Algorithms (e.g. Lee and Jeong, 2014).  

3.2.6. Multi-temporal methods 

Two sub-types of multi-temporal downscaling methods were identified. These are scale-invariant 
(fractal-based) methods and multiplicative cascade models. 

Scale-invariance of annual maximum rainfall has been recognised for a long time (Menabde et al., 
1999). This means that rainfall intensities of given return period and duration are scalable from 
intensities observed over other longer or shorter durations. Hence, intensities (mm/h) measured over 
durations of 1- to 24-h can be used to estimate a scaling parameter from which sub-hourly intensities 
can be extrapolated (Figure 8). Moreover, a very appealing aspect of scaling is that the technique can 
be applied to daily rainfall records to estimate sub-daily intensities (e.g. Benestad et al., 2021). In 
practice, there may be regionally dependent breakpoints in the scaling which relate to changes in the 
underlying atmospheric dynamics that are generating the extreme rainfall. In this case, multi-scaling 
is required (Courty et al., 2018). For example, an observed breakpoint between 30-min and 1-h in 
rainfall data for the Pacific island of Guam island was attributed to a transition from local storm 
systems to that of large-scale tropical depressions (Yeo et al., 2022). Scaling parameters for ungauged 
sites can be estimated from homogeneous rainfall regions and physiographic variable such as site 
elevation and distance from coast (e.g. Wang et al., 2024). When applied to bias corrected GCM or 
RCM output, scaling can be used to investigate the effect of climate change on present and future IDF 
curves (e.g. Herath et al., 2016; Requena et al., 2021; Tabari et al., 2021). Daily to sub-daily scaling 
techniques are also applicable to extreme hourly wind speeds (e.g. Shin et al., 2018). 

 

Figure 8. Estimated (lines with 10% error zones) and observed (solid dots) IDF curves for rainfall 
intensities (mm/h) at a site in Oxfordshire over durations of 1–24 h (Wang et al., 2024) 
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Single site cascade models disaggregate daily rainfall totals into successively finer time-steps 
depending on the branching number which maybe varied or held constant throughout the sequence 
(as in Figure 9). Rainfall amounts from the previous step are sub-divided stochastically on each 
bifurcation using splitting weights (based on either empirical or theoretical density functions) (Olsson, 
1998). This means that the aggregate of split rainfall amounts always sums to the initial total. 
Temperature dependence can be introduced by stratifying the rainfall and hence model parameters 
by temperature bin (Bürger et al., 2019). This allows adjustment of simulations for climate change. 
However, the autocorrelation of cascade series typically underestimates observed but can be 
improved by conditioning model parameters on circulation patterns (Lisniak et al., 2013). Other 
(resampling) methods are needed to extend to multi-site applications (e.g. Müller and Haberlandt, 
2018) and simpler methods may produce annual maximum series that are closer to observations 
(Alzahrani et al., 2023). Moreover, splitting weights have been shown to vary with time of day, month, 
decade, rainfall volume, event structure and ENSO anomaly (McIntyre et al., 2016). 

 

Figure 9. Multiplicative cascade model scheme, beginning with a rainfall amount of 24 mm. In this 
case the branching number is 2 throughout the cascade (Müller and Haberlandt, 2018). 

3.2.7. Other approaches 

Other approaches emerge from the literature. These mainly involve downscaling coarse-resolution 
satellite products to higher-resolution surface variables. This is particularly helpful for regions where 
there are sparse surface observations. Most studies are concerned with improving spatial resolution, 
but a few involve time-scaling. For instance, four-per-day remotely sensed Land Surface Temperature 
(LST) images were downscaled using regression-based methods to hourly in situ measurements of 
LSTs (Sara et al., 2024); LANDSAT (higher spatial resolution) and MODIS (higher temporal resolution) 
data have been blended by machine learning (ANN, RF, GB) to predict sub-daily LST at 30 m resolution 
for a remote area of the Antarctic (Lezama Valdes et al., 2021); and information from multiple satellite 
sensors have been combined to fill data gaps and temporally downscale LST via a pixel level fusion 
model (Desai et al., 2021). 

Several satellite/model-derived products are also available at sub-daily time-scales for precipitation. 
These quasi-global gridded hourly data include the 0.1° resolution GSMaP-std V8 (Kubota et al., 2024); 
0.1° MSWEP-ng V2.8 (Beck et al., 2019); 0.4° PERSIANN-CCS (Hong et al., 2004); and 0.4° PDIR-Now 
(Nguyen et al., 2020). Overall, MSWEP V2.8 (daily) demonstrated the best performance when used to 



 
 

 

 

 

 
D4.1	Preliminary assessment and comparison of state-of-the-art methods for forecasts and projections of  
hourly extremes	 						 14	
	

simulate observed daily streamflow for 16,295 catchments (Abbas et al., 2025). However, further 
research is needed to evaluate sub-daily precipitation products in the same way. 

3.2.8. Crossing-cutting methods 

Finally, there are two widely adopted cross-cutting methods. These are intensity-duration-frequency 
(IDF) curves widely used in engineering design, and change factors (CFs) for adjusting sub-daily 
weather extremes by projected changes in climate. 

Intensity-duration-frequency curves are the end point of ~50 included articles, regardless of the input 
data or downscaling techniques applied. For instance, IDF curves were cited as the rationale in all the 
following hybrid approaches: GCM weather types with scaling parameters (Bermúdez et al., 2022); 
North American Regional Reanalysis with analogues (Sridhar et al., 2019); RCM with quantile mapping 
(So et al., 2017); RCM with multi-temporal scaling (Wilby et al., 2023); and daily weather generator 
with multi-temporal scaling (Lu and Qin, 2020).  

 
Figure 10. Stationary and nonstationary IDF curves with 95% confidence intervals during 2050–2074 
under SSP585, given a return period of 25-years. Red lines represent stationary IDF curves; blue lines 

are nonstationary IDF curves. Orange bands represent the 95% confidence intervals for the stationary 
IDF; blue bands are the same for the nonstationary IDF (Song et al., 2025). 

Some articles also incorporate procedures for adjusting IDF curves for future climate conditions (as in 
Figure 10). Revised curves may emerge from bias corrected and/or spatially downscaled GCM/RCM 
output under different greenhouse gas emissions scenarios. Climate model output can then be used 
in several ways to produce climate-adjusted IDF curves. First, a future IDF curve may be derived 
directly from spatially and temporally downscaled GCM/RCM output (e.g. Herath et al., 2016; Singh 
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et al., 2016). Second, downscaled daily rainfall (or annual maximum) series can be modified using 
change factors from GCMs/RCMs then temporally scaled to sub-daily durations to create a future IDF 
curve (e.g. Shrestha et al., 2017). Third, changes between return-period intensities from downscaled 
present and future IDF curves can be used to rescale the same return-period intensities on a historical 
IDF curve (e.g. Cook et al., 2017; Zhao et al., 2021). Where there are ensembles of GCMs/RCMs and 
emissions scenarios, confidence intervals can be attached to IDF curves (e.g. Halder and Saha, 2024). 

3.3. Comparison and summary of techniques 

The above typology of sub-daily downscaling may give the impression that the various techniques are 
mutually exclusive. In practice, at least 45% of the articles are implementing more than one method 
so should be regarded as hybrid. 

Overall, the five most preferred temporal scaling methods are: stochastic weather generators (n = 46 
articles), numerical weather prediction and forecasting models (n = 40), scale invariance/power law 
methods (n = 39), RCMs (n = 37), and analogue/resampling techniques (n = 37) (Figure 11). At least 
20% of the articles apply some form of bias correction to the re-analysis, NWP, GCM, or RCM inputs,  
prior to the temporal downscaling or disaggregation step. Quantile-quantile mapping is used in nearly 
10% of the studies. 

 

Figure 11. Number of articles applying various time-scaling and cross-cutting methods to estimate 
sub-daily weather extremes. Note that counts are not mutually exclusive to reflect hybrid methods 

The three least favoured techniques (excluding remote sensing methods) are multiplicative cascade 
models (n = 7 articles), Poisson process models (n = 12), and machine learning adaptive optimisation 
methods (n = 14). Arguably, all of these techniques are more involved to apply.  

Each temporal scaling or disaggregation method has distinctive strengths and weaknesses (Table 1). 
All require high-resolution (hourly or less) observational data to implement or, at very least, to verify 
techniques. However, varying degrees of process representation are involved. Dynamical downscaling 
schemes resolve physical processes, sometimes at cloud convection scales, over large domains with 
good representation of orographic controls. Statistical downscaling and stochastic methods have 
intermediate complexity and partial process representation due to the influence of circulation 
patterns, and other large-scale drivers of local weather extremes. Multi-temporal scaling recognises 
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that different rainfall dynamics operate at different time- and space-scales. However, ANN methods 
are essentially black box models, apart from the implicit process insight conveyed by input variables. 

There have been many intercomparison studies of dynamical-v-dynamical, statistical-v-statistical, and 
dynamical-v-statistical spatial downscaling methods using benchmark data sets and performance 
metrics (e.g. Wilby et al., 1998; Mearns et al., 1999; 2013; Haylock et al., 2006; Déqué et al., 2007; 
Schmidli et al., 2007; Gutmann et al., 2012; Hertig et al., 2018). The EU VALUE project also created a 
framework for downscaling model validation and comparison (Maraun et al. 2015). There has been 
no equivalent, systematic assessment of different temporal downscaling methods, to date.  

Instead, there are a few side-by-side comparisons of some techniques. For example, Sunyer et al. 
(2015) assessed projected changes and uncertainties in extreme hourly precipitation over Denmark 
using a change factor method, weather generator, and climate analogue approach to downscale RCM 
output. Their results showed increases in extreme precipitation but the extent of change varied with 
location and RCM. Poschlod et al. (2018) compared the properties of hourly precipitation over Oslo 
produced by WRF and a non-parametric disaggregation technique (Method of Fragments, MoF). The 
stochastic model represented summary statistics well but could not replicate either the spatial or 
temporal coherence of precipitation. The WRF model reproduced the spatial and temporal coherence 
but tended to underestimate peak intensities at 1h an 3h resolutions (Figure 12). Hassanzadeh et al. 
(2021) found inconsistent future extreme precipitation values for Montréal when comparing the 
scenarios from two quantile mapping methods with a hybrid weather generator-analogue method. 
Arfa et al. (2021) reported that the scale invariance method outperformed the MoF for sub-daily 
extreme rainfall intensities in Tehran. 

 

Figure 12. Empirical annual exceedance probabilities for extreme rainfall intensities over 1h and 3h 
durations for observed, WRF, and the Method of Fragments (MoF; Poschlod et al., 2018). 

These pieces of evidence confirm the view – more generally from dynamical-statical downscaling 
intercomparisons – that different methods yield different levels of accuracy when estimating extreme 
rainfall in different locations. Establishing the physical basis of such variations is seldom done (Fowler 
et al., 2025). This leads to the conclusions that the preferred method of temporal downscaling will 
likely reflect practical considerations around the (1) intended use(s); (2) required spatial (single- site v 
multi-site) and temporal (sub-hourly v hourly) resolutions; and (3) available time, technical and (data) 
resources. Overall, scale invariance methods are favoured for single-site, sub-hourly extremes; hybrid 
weather generator-analogue methods for multi-site, hourly extremes; and hybrid NWP-QQM 
methods for continuous simulations of hydrology in large catchments. All these methods can be 
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adapted for climate change projections and creation of adjusted IDF curves. However, where surface 
data are limited or unavailable, high temporal-spatial resolution satellite/merged precipitation 
products may be an option. Alternatively, IDF curves may reconstituted from global models of scaling 
parameters based on regional climate and physiographic variables (e.g. Wang et al., 2025). 

The following case study demonstrates the construction and evaluation of hourly to sub-hourly 
extreme rainfall estimates for a data sparse region of eastern Europe using publicly available 6h data. 
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Table 1 The main strengths and weaknesses of temporal downscaling and disaggregation methods with examples of good practice in each case. 

Group Sub-type Strengths Weaknesses Example 

Dynamical 
downscaling 

High-resolution re-analysis 
products (e.g. ERA5, NARR) 

Globally available, gridded weather variables that are 
amenable for sub-daily hydrological modelling and 
extreme event analysis. 

Highest spatial and temporal resolutions are typically ~30 km 
and hourly. Post-processing and/or downscaling is required for 
station and sub-hourly scales. 

Tilloy et al. 
(2025) 

Numerical weather 
prediction and forecasting 
models (e.g. WRF) 

High-resolution, weather simulations at 1 km hourly 
resolution for various extremes (heavy rain, 
heatwaves, wind gust). Resolves orographic effects. 

Applied over limited areas due to high computational cost. Post-
processing and/or further downscaling is needed for site and 
sub-hourly scales.  

Vu et al. 
(2018) 

High-resolution Regional 
Climate Models (RCMs) 

As above. Can also be run with future climate and 
land surface conditions. Responds in physically 
consistent ways to external forcings. 

As above. Results are also sensitive to parameterisation, realism 
of the boundary model, temporal and spatial resolutions. 
Cloud/ convection scheme affects precipitation results. 

Reder et al. 
(2022) 

Statistical 
downscaling 

Quantile-quantile mapping 
(QQM) 

Relatively easy to apply and can be fit to highest 
resolution data available. Applicable to output from 
reanalyses, NWP, and RCMs.  

Assumes stationary quantile-quantile relationships. Problematic 
when extrapolating beyond observed quantiles, including for 
climate change signals. Depends on assumed distribution 
function and interpolation method. 

Song et al. 
(2025) 

Bias correction (BC) As above. Typically mean and/or variance correction 
via first spatial downscaling then time scaling using 
large-scale predictor variables. Many transfer 
functions are available. 

Extra steps are needed to address frequency-dependent biases. 
Future climate projections are sensitive to the bias correction 
method(s) applied. 

Forestieri et 
al. (2017) 

Stochastic 

Weather generators (e.g. 
AWE-GEN, CLIGEN, LARS-
WG, SDSM) 

Versatile method for conditioning various sub-daily 
quantities. Can quickly generate very long series or 
distributions for impact simulations. 

Typically operates on a daily time-step so further statistical 
disaggregation or resampling is needed to derive sub-daily 
series and extremes. Parameters are assumed to be valid for 
climate change. Can produce unanticipated effects in secondary 
variables when changing precipitation parameters. 

Lucio et al. 
(2020) 

Analogue/resampling (e.g. 
KNN) 

Versatile method for conditioning various observed 
sub-daily quantities such as extreme rainfall, 
temperatures, air pollution, wind and wave 
conditions. No prior assumptions are needed about 
the data distribution. 

Typically requires bespoke or pre-existing weather patterns to 
stratify sub-daily data. Weather pattern to predictand 
relationships are assumed to be strong and stationary. 

Lin et al. 
(2017) 

Poisson process (e.g. NSRP) Applicable over timescales of minutes to hours and 
can generate previously unseen rainfall extremes. 
Parameters can be tuned using high-resolution RCM 
output for producing future IDF curves. 

Poisson process models assume that storm and rain cell 
occurrences are independent so persistence of rainfall may be 
understated without incorporating autoregression. Rescaling is 
needed to ensure consistent rainfall totals across timescales. 

Park et al. 
(2019) 

Machine 
learning 

Artificial Neural Networks 
(ANNs) 

Underlying process understanding is not required. 
Complex, non-linear input-output relationships can 
be handled.  

Requires well-distributed input predictor variables and data for 
training the network at the target time interval. Overtraining of 
the network can weaken predictive ability. 

Noor et al. 
(2018) 
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Adaptive optimisation (e.g. 
RFs, GAs, XGB, GBT) 

Powerful tools for optimising regression- and k-
nearest neighbour models for estimating stochastic 
rainfall model parameters or resampling sub-daily 
extremes. 

Results are sensitive to algorithm parameters and evaluation 
function. Computational demands may be high for large 
sampling frames. Noisy data may yield unreliable predictions. 

Sebbar et al. 
(2023) 

Multi-
temporal 

Scale invariance methods Relatively easy to apply and enables estimation of 
sub-daily extreme values from observed and climate 
model daily rainfall (and wind). Scaling parameters 
can be estimated for ungauged sites using 
physiographic data. 

Scaling parameters are sensitive to the underlining probability 
distribution(s) used for extreme value estimation, the range of 
durations spanned, and the presence of any break-points. 

Wang et al. 
(2024) 

Cascade models Cascaded amounts conserve the total of the initial 
time-step (i.e. daily rainfall). Can achieve temporal 
disaggregation to a few minutes. Can be extended to 
multi-sites using resampling algorithms and 
incorporate temperature-dependent effects. 

Unless the branch number can be varied from 2, the day length 
is required to be 1280 mins to yield 5- or 10-min values. 
Autocorrelation of disaggregated series is typically 
underestimated. Parameters vary with time of day and season. 

Müller and 
Haberlandt 
(2018) 

Other 

Remote sensing High temporal and spatial resolution precipitation 
products and Land Surface Temperatures achieved by 
blending information from satellites, models and 
surface measurements. 

Relatively few examples of temporal downscaling; most studies 
are concerned with improving spatial resolution. Data are 
needed to ground-truth satellite measurements. Accuracy 
varies by climate regime and region. 

Nguyen et al. 
(2020) 

Cross-cutting 

Intensity-duration-
frequency (IDF) curves 

Standard way of capturing information about 
extreme values in a format that is useful to engineers 
and planners for certain design applications. 

Stationarity assumption of historic IDF curves is invalid for long-
lived infrastructure. High-resolution data for creating IDF curves 
are not always available. Time series are needed in applications 
such as water resource management. 

Benestad et 
al. (2021) 

Change factors Straightforward technique for applying projected 
climate changes to baseline weather series. 
Uncertainty due to climate model, emissions 
scenario, and climate variability may be reflected in 
the range of factors used. 

Results may vary depending on how/when the change factors 
are applied to baseline data, annual maximum series, extreme 
value distribution, or historical IDF curve. Assumes climate 
model biases cancel over different periods. Assumes that the 
climate change signal is accurate. 

Cook et al. 
(2017) 
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4. CASE STUDY 

The following case study demonstrates a parsimonious multi-temporal, scale invariance method using 
time-series of 6 h rainfall from an open access data source. Equivalent site-specific scaling parameters 
(Beta) for multiple locations may subsequently be related to readily accessible physiographic variables 
to estimate sub-6 h extreme rainfall at ungauged sites. Here, the procedure is shown using annual 
maximum series based on daily and 6 h rainfall records for Novi Sad in Vojvodina (Figure 13). 

 
Figure 13. Daily rainfall stations in Vojvodina, Serbia. 

4.1. Data sources 

Rainfall data for Novi Sad were obtained from two sources. First, daily totals were provided by the 
Republički Hidrometeorološki Zavod Srbije (RHMZ) for the years 1961-2024. These data were used to 
calculate the 24 h and 48 h annual maximum series (AMS). Second, 6 h rainfall totals were extracted 
from the OGIMET Weather Information Service6. These raw data were post-processed to ensure 
consistent 6 h time steps (accounting for missing observations), disaggregation of 12 h totals into 6 h 
amounts, and checking the consistency of daily totals with the sum of previous four 6 h amounts. The 
AMS were then derived for 6 h, 12 h, 24 h and 48 h durations for the period 2001-2024. Note, that 
maxima were not constrained to fit within the daily reporting hours of 06:00 to 06:00. This ensures 
that maximum intensities for 12 h, 24 h and 48 h – that potentially span multiple reporting days – can 
still be detected. For consistency, all models were evaluated using a common period of 2001-2024. 

4.2. Method 

The workflow described by Wang et al. (2024: 288-290) is reproduced here. First, the Gumbel (EV1) 
distribution was used to construct IDF tables from 24 h extreme rainfall intensities because of the 

 
6 https://www.ogimet.com/home.phtml.en  

https://www.ogimet.com/home.phtml.en
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ease of calculating parameters and performance at replicating AMS at sites globally (Rodríguez-Solà 
et al., 2017). Next, it was assumed that the sub-daily rainfall intensity id,T for duration d (hours) and 
return period T (years) has the following scaling relationship with another rainfall intensity series of 
duration D (hours): 

𝑖	!,# = 𝜆$ ∙ 𝑖%,#  

where λ  is a scaling variable that depends on the scale ratio d/D and β is the scaling parameter. Both 
sides of the above equation are raised by power q to obtain: 

𝑖!,#
& = &

𝑑
𝐷)

'(&)

∙ 𝑖%,#
&  

where K(q) is some function of q. The K(q) function can be either linear or non-linear. When linear, 
the scaling process is a simple scale or mono-fractal; otherwise it is multiscale or multi-fractal. Most 
studies assume scaling to be linear (e.g. Angulo-Fernández et al., 2018; Menabde et al., 1999). In this 
case, K(q) is a linear function of  β expressed below: 

𝐾(𝑞) = 𝛽𝑞 

The scaling parameter β is derived from the slope of the K(q)-q plot and thus the final temporal scaling 
relationship is given by: 

𝑖	!,# = &
𝑑
𝐷)

$

∙ 𝑖%,#  

Given parameter β and the 24 h mean intensity (mm/h) for a specified return period (assuming the 
EV1 distribution), it is then possible to scale sub-daily intensities for required duration(s). The accuracy 
of this method was assessed using (a) rainfall intensities over durations less than 2 h read from 
previously published IDF curves for Novi Sad (Figure 14), and (b) an IDF table of rainfall intensities with 
durations 6 h and 12 h based on OGIMET data. 

 
Figure 14. IDF curves for Novi Sad. Source: Stipić et al. (2014). 

4.3. Results 

Based on the 24 h and 48 h AMS derived from daily rainfall records for the period 2001-2024, the 
value of β = -0.700. If a longer calibration period 1961-2024 is used, the value of β = -0.715. This finding 
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is consistent with previous analyses showing that – in the absence of major non-homogeneities, such 
as a weather station move – the value of β is generally stable between periods (Wang et al., 2024). 

The first test of the temporal downscaling method was against published values for 0.25 h, 0.5 h, 1 h 
and 2 h rainfall intensities with 2, 5, 10 and 25 year return periods for Novi Sad (Figure 15). Return 
periods greater than 25 years were not considered due to the brevity of the training data. Overall, 
there is a tendency for the scaling model to underestimate published intensities across the assessed 
durations and return periods (Figure 15). However, with a Mean Absolute Error (MAE) of 13% the 
temporally scaled estimates are in the region of rainfall measurement error. 

 

  
Figure 15. Comparison of (a) published and (b) temporally downscaled IDF values for Novi Sad. 

The second test compared temporally downscaled 6 h and 12 h extreme rainfall intensities with values 
derived from OGIMET data (Figure 16). This enabled evaluation of longer duration, sub-daily events 
for return periods up to 25 years. As before, the scaling model underestimated rainfall intensities 
across all durations and return periods. The MAE for 6 h and 12 h durations was 18% when scaling 
from the RHMZ daily record. However, if the 24 h rainfall intensities from OGIMET are used instead, 
the MAE reduces to just 5%. This shows the benefit of relaxing the fixed 24 h period for recording. 

 

  
Figure 16. Comparison of (a) OGIMET and (b) temporally downscaled IDF values for Novi Sad. 

4.4. Discussion 

The above case study for Novi Sad supports the view that a single parameter (β) temporal scaling 
model can produce robust estimates of 0.25 h to 12 h extreme rainfall intensities when given only 
daily rainfall series. The next step will be to apply the same scaling model to all 26 rainfall recording 
stations in Serbia. This will enable testing of the generality of the findings, as well as the feasibility of 
predicting β from physiographic variables such as site elevation, distance from coast, latitude and 
longitude. Provided that such spatial-temporal scaling relationships can be established, it will then be 
possible to construct IDF curves for any location in Serbia – even for areas where there are currently 
no surface rainfall measurements. Comparable methods may also be used to scale heatwave intensity 
duration frequency (HIDF) curves (e.g. Ouarda and Charron, 2018; Mazdiyasni et al., 2019). 
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In due course, the above methods should be extended to climate change applications. This would 
address the likelihood that IDF curves in Serbia are non-stationary under a changing climate. Without 
adjusting the IDF curve, future rainfall (and heatwave) intensities could be underestimated, leading 
to under-design and potential failure of infrastructure during extreme weather events. Fortunately, 
there are several ways of incorporating future climate change into IDF curves using climate model 
output (e.g. Herath et al., 2016; Shrestha et al., 2017; Zhao et al., 2021). This will be a priority for 
future research. 

5. KEY FINDINGS AND RECOMMENDATIONS 

The frequency, severity, and duration of extreme weather – such as floods, heatwaves, and droughts 
– are increasing globally. Unfortunately, high-resolution, sub-daily weather data are not widely 
available in the Balkans, and especially in Serbia. This hampers efforts to upgrade the design and 
climate resilience of long-lived urban drainage systems, flood defences, bridges, energy systems, and 
other critical infrastructure.   

This Deliverable provides the first global systematic review of spatial and temporal scaling methods 
used to bridge the gap between more readily available daily/ monthly weather data, and less plentiful 
sub-daily data. A parsimonious temporal downscaling method for estimating local intensity-
frequency-duration (IDF) curves for extreme rainfall is also demonstrated for Serbia. 

A five-step workflow was used to sift peer-reviewed, scientific literature to draw out key themes and 
evidence in line with best-practice guidance on systematic review protocols. After screening articles 
for topic relevance and output type, 296 sources were included for in depth, bibliometric analysis. 
The key findings were as follows: 

(i) Approximately 90% of articles on temporal scaling have been published since 2010, with two 
thirds of these outputs attributed to coauthors affiliated to just 10 countries (USA, China, 
Canada, Germany, UK, South Korea, Spain, Italy, Switzerland, and Australia). 

(ii) The top 20 most frequently used periodicals account for more than 50% of the articles. 
Amongst these journals, 8 are hydrological, 5 are climate and/or meteorological, 3 are 
geophysical, 3 are cross-disciplinary, and 1 is energy/ building focused. 

(iii) The five main sectors identified from included article abstracts were water and flood risk 
management; urban infrastructure and drainage; renewable energy and power systems; 
agriculture and land management; and human health. These sectors all require sub-daily 
weather information. 

(iv) Seven main groups of temporal scaling technique were identified. These are: (1) dynamical 
downscaling; (2) statistical downscaling; (3) stochastic methods; (4) machine learning; (5) 
multi-temporal models; (6) other techniques; and (7) cross-cutting methods. 

(v) The five most popular methods were found to be: stochastic weather generators; Numerical 
Weather Prediction (NWP) and forecasting models; scale invariance/power law methods; 
Regional Climate Models; and analogue/resampling techniques.  

(vi) Nearly half of included articles apply more than one method of sub-daily downscaling so 
should be regarded as hybrid in approach. Some form of bias correction and/or quantile-
quantile mapping (QQM) is used in 20% and 10% of the studies, respectively. 
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(vii) Each temporal scaling or disaggregation method has distinctive strengths and weaknesses. 
However, there have been very few systematic side-by-side comparisons of different 
temporal scaling methods, to date. 

(viii) The preferred method of temporal downscaling reflects practical considerations around the 
intended use(s); required spatial (single- site v multi-site) and temporal (sub-hourly v hourly) 
resolutions; and available time, technical and (data) resources. Overall, scale invariance 
methods are favoured for single-site, sub-hourly extremes; hybrid weather generator-
analogue methods for multi-site, hourly extremes; and hybrid NWP-QQM methods for 
continuous simulations of hydrology in large catchments. 

(ix) A case study of a multi-temporal, scale-invariance method for Novi Sad, Serbia showed that 
errors of less than 15% for 0.25 h to 2 h extreme rainfall intensities and 5% for 6 h to 12 h 
intensities can be achieved even when only daily data are available. 

Based on the findings of the meta-analysis and case study the following recommendations are made: 

(i) Apply the scale-invariance method to other weather stations across Serbia to evaluate the 
transferability of the technique plus any associations between extreme rainfall scaling 
parameters and site characteristics (such as elevation, latitude and longitude). 

(ii) Test the skill of the scale-invariance method at generating heatwave intensity-frequency-
duration (HIDF) curves under present and projected climate conditions. 

(iii) Undertake systematic side-by-side comparisons between different temporal downscaling 
methods (including emerging Artificial Intelligence techniques) for extreme rainfall at test 
sites across Europe to establish their relative accuracy and transferability. 

(iv) Extend the above techniques for climate change applications – most likely by adjusting IDF 
and HIDF curves – to deliver information about changing precipitation and temperature 
extremes in formats that are most useful for engineers and planners. 
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ANNEXES 
Large Language Models (LLMs) are powerful tools for initial scoping of themes from substantial 
amounts of textual information7 . Accordingly, ChatGPT was given the abstracts of the screened 
articles and asked to identify the main (a) techniques for temporal disaggregation of coarse-resolution 
climate data and (b) sectors covered. The output from ChatGPT is given below and was used to shape 
the structure of the main body of this report. 

A1. Main techniques identified by ChatGPT for temporal disaggregation 
Temporal disaggregation typically refers to breaking down coarse-resolution climate data (e.g., daily 
or monthly) into finer time scales (e.g., hourly or sub-hourly).   

### **Techniques for Temporal Disaggregation Identified in the Abstracts:**   

1. **Statistical Downscaling Approaches:**   

   - **Quantile-Quantile Mapping (QQM):** Adjusts distributions of observed vs. modeled data.   

   - **Markov Chains:** Models daily rainfall occurrence and transitions for downscaling.   

   - **Kernel Density Estimators (KDE):** Used for probabilistic disaggregation of rainfall data.   

2. **Machine Learning-Based Approaches:**   

   - **Artificial Neural Networks (ANNs):** Used for sub-daily precipitation downscaling.   

   - **Random Forests (RF):** Applied for disaggregating daily to hourly rainfall.   

   - **Extreme Gradient Boosting (XGBoost):** Improves prediction accuracy for fine-scale temporal 
breakdowns.   

3. **Stochastic Weather Generators (SWGs):**   

   - Simulates high-resolution weather variables based on historical data patterns.   

   - Used for **rainfall and temperature disaggregation** into hourly/sub-hourly scales.   

4. **Multi-Fractal and Cascade Models:**   

   - **Multiplicative Cascade Models:** Preserve rainfall variability across multiple time scales.   

   - **Neyman-Scott Rectangular Pulse (NSRP) Models:** Used for synthetic disaggregation of rainfall 
events.   

5. **Dynamical Downscaling with High-Resolution Climate Models:**   

   - **WRF (Weather Research and Forecasting Model):** Used to refine climate projections at sub-
daily scales.   

   - **ICON-LAM:** A high-resolution numerical weather prediction model for hourly downscaling.   

6. **Hybrid Approaches (Combination of Methods):**   

 
7 Wilby, R.L. and Esson, J. 2024. AI literacy in geographic education and research: Capabilities, caveats, and 
criticality. The Geographical Journal, 190, p.e12548. 
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   - Combining **machine learning + statistical techniques** to improve accuracy.   

   - Using **bias correction + stochastic models** to improve temporal detail. 

A2. Main sectors using temporal disaggregation according to ChatGPT 
The **Temporal Disaggregation** papers cover multiple sectors, as identified from the abstracts. The 
main sectors include:   

### **1. Hydrology & Flood Risk Management**   

   - Disaggregating precipitation to **sub-daily scales** for **flash flood prediction**.   

   - Enhancing **Intensity-Duration-Frequency (IDF) curves** for better flood modeling.   

   - Improving **river discharge simulations** for ungauged basins.   

### **2. Urban Infrastructure & Water Management**   

   - **Stormwater drainage system design** under changing climate conditions.   

   - Assessing **urban flooding risks** using downscaled rainfall data.   

   - Developing **design storms** for infrastructure planning.   

### **3. Renewable Energy & Power Systems**   

   - Disaggregating **wind speed and solar irradiance** data for energy modeling.   

   - Improving **hourly electricity demand forecasting** under climate variability.   

   - Enhancing **power grid stability analysis** with finer time-scale data.   

### **4. Agriculture & Land Management**   

   - Downscaling precipitation for **soil moisture estimation**.   

   - Assessing **crop yield variability** using high-resolution climate projections.   

   - Evaluating **irrigation needs** based on sub-daily weather conditions.   

### **5. Climate Modelling & Atmospheric Science**   

   - Using **regional climate models (RCMs)** to generate fine-scale precipitation data.   

   - Applying **machine learning and stochastic models** to improve climate projections.   

   - Downscaling **temperature and humidity data** for climate impact studies.   

### **6. Human Health & Thermal Stress**   

   - Estimating **heatwave intensity at sub-daily scales**.   

   - Assessing **urban heat stress on vulnerable populations**.   

   - Improving **bioclimatic indices (e.g., UTCI) for health risk assessments**.  


